35 research outputs found

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

    Get PDF
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    Releasing the concept of HLA-allele specific peptide anchors in viral infections: A non-canonical naturally presented human cytomegalovirus-derived HLA-A*24:02 restricted peptide drives exquisite immunogenicity.

    No full text
    T-cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA-I molecules bound to non-self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T-cells. Especially, the progression of HCMV disease in immunocompromised patients induces life-threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T-cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV-peptide recruitment over self-peptides. We utilized soluble HLA technology in HCMV-infected fibroblasts and sequenced naturally sHLA-A*24:02 presented HCMV-derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T-cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA-allele specific peptide selection

    Carbamazepine-mediated adverse drug reactions: CBZ-10,11-epoxide but not carbamazepine induces the alteration of peptides presented by HLA-B*15:02.

    No full text
    Among patients treated with the anticonvulsive and psychotropic drug carbamazepine (CBZ), approximately 10% develop severe and life-threatening adverse drug reactions. These immunological conditions are resolved upon withdrawal of the medicament, suggesting that the drug does not manifest in the body in long term. The HLA allele B*15:02 has been described to be a genomic biomarker for CBZ-mediated immune reactions. It is not well understood if the immune reactions are triggered by the original drug or by its metabolite carbamazepine-10,11-epoxide (EPX) and how the interaction between the drug and the distinct HLA molecule occurs. Genetically engineered human B-lymphoblastoid cells expressing soluble HLA-B*15:02 molecules were treated with the drug or its metabolite. Functional pHLA complexes were purified; peptides were eluted and sequenced. Applying mass spectrometric analysis, CBZ and EPX were monitored by analyzing the heavy chain and peptide fractions separately for the presence of the drug. This method enabled the detection of the drug in a biological situation post-pHLA assembly. Both drugs were bound to the HLA-B*15:02 heavy chain; however, solely EPX altered the peptide-binding motif of B*15:02-restricted peptides. This observation could be explained through structural insight; EPX binds to the peptide-binding region and alters the biochemical features of the F pocket and thus the peptide motif. Understanding the nature of immunogenic interactions between CBZ and EPX with the HLA immune complex will guide towards effective and safe medications
    corecore